Giant Faraday Rotation of High-Order Plasmonic Modes in Graphene-Covered Nanowires.
نویسندگان
چکیده
Plasmonic Faraday rotation in nanowires manifests itself in the rotation of the spatial intensity distribution of high-order surface plasmon polariton (SPP) modes around the nanowire axis. Here we predict theoretically the giant Faraday rotation for SPPs propagating on graphene-coated magneto-optically active nanowires. Upon the reversal of the external magnetic field pointing along the nanowire axis some high-order plasmonic modes may be rotated by up to ∼100° on the length scale of about 500 nm at mid-infrared frequencies. Tuning the carrier concentration in graphene by chemical doping or gate voltage allows for controlling SPP-properties and notably the rotation angle of high-order azimuthal modes. Our results open the door to novel plasmonic applications ranging from nanowire-based Faraday isolators to the magnetic control in quantum-optical applications.
منابع مشابه
Graphene-based photonic crystal to steer giant Faraday rotation
Related Articles All-optical tuning of a quantum dot in a coupled cavity system Appl. Phys. Lett. 100, 231107 (2012) Cherenkov high-order harmonic generation by multistep cascading in χ(2) nonlinear photonic crystal Appl. Phys. Lett. 100, 221103 (2012) Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics Appl. Phys. Lett. 100, 181110 (2012) Control of absorptio...
متن کاملFabry-Perot enhanced Faraday rotation in graphene.
We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of...
متن کاملIntrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene.
We show that in graphene epitaxially grown on SiC the Drude absorption is transformed into a strong terahertz plasmonic peak due to natural nanoscale inhomogeneities, such as substrate terraces and wrinkles. The excitation of the plasmon modifies dramatically the magneto-optical response and in particular the Faraday rotation. This makes graphene a unique playground for plasmon-controlled magne...
متن کاملNovel midinfrared plasmonic properties of bilayer graphene.
We study the midinfrared plasmonic response in Bernal-stacked bilayer graphene. Unlike its monolayer counterpart, bilayer graphene accommodates optically active phonon modes and a resonant interband transition at infrared frequencies. They strongly modify the plasmonic properties of bilayer graphene, leading to Fano-type resonances, giant plasmonic enhancement of infrared phonon absorption, a n...
متن کاملGraphene-based nanowire supercapacitors.
We present a new type of electrochemical supercapacitors based on graphene nanowires. Graphene oxide (GO)/polypyrrole (PPy) nanowires are prepared via electrodepostion of GO/PPy composite into a micoroporous Al2O3 template, followed by the removal of template. PPy is electrochemically doped by oxygen-containing functional groups of the GO to enhance the charging/discharging rates of the superca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 7 شماره
صفحات -
تاریخ انتشار 2016